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ADDENDUM 

Modification of the extended (2x2)  algorithm by a 
variational principle 

K G Kreuzer, H G Miller? and W A BergerS 
'i Institut fur Theoretische Physik, Universitat Frankfurt, West Germany 
3 Institut fur Theoretische Physik, Universitat Giessen, West Germany 

Received 28 April 1980 

Abstract. The extended (2 x 2) algorithm is supplemented by a variational procedure which 
improves the convergence rate of the algorithm. 

Recently we have demonstrated the applicability of the Lanczos and the (2 x 2) 
algorithm for obtaining the exact ground state of a full (unprojected) Hamiltonian of a 
quantum mechanical system (Kreuzer et a1 1980a,b). Although in the case of the (2 x 2) 
algorithm each iteration step is essentially simpler, the rate of convergence is generally 
slower than that of the Lanczos algorithm, provided of course that the same initial trial 
state is used in both cases. This has already been demonstrated in the case of a 
finite-dimensional Hamiltonian matrix (Berger et a1 1977), and is also valid in the case 
of the full Hamiltonian operator (Kreuzer 1978). 

The convergence rate of the (2 x 2) algorithm may, however, be considerably 
improved by means of a simple variational procedure. In each iteration step one passes 
from the single trial state IT) to a family of trial states IT@)) such that each member 
including IT) is specified by a definite value of the parameter p. Then the parameter is 
chosen in such a way that the expectation value of IT@)) with the Hamiltonian I? 
becomes minimal with respect to p, i.e. 

With the resulting trial state lT(p0)), Po being the solution of the variational equation 
above, the (2x2) iteration step is then performed, yielding a vector lel), whose 
expectation value with I? is lower than that of IT@,)) (Kreuzer 1980b). The state lel) is 
then taken as a new trial state for restarting the procedure. Modifying the extended 
(2 x 2) algorithm in this manner yields the same final result as before, i.e. the ground 
state of the Hamiltonian but now with a much better convergence rate-provided of 
course that the usual requirements concerning the trial state are fulfilled (Kreuzer 
1980b) and that in each iteration step the ground state is present in IT(@)) for each p. 
The convergence rate, as can be seen from the numerical example below, may be as 
good as that of the Lanczos algorithm. For the latter, such a modification is possible 
once at the most in the initial choice of the trial state, since otherwise the structure of the 
algorithm is destroyed. 
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As a numerical example we have calculated the ground state energy of the 
anharmonic oscillator in one dimension: 

starting from a family of initial trial states given by 

(XI T ( P ) )  := cr exp(-pyx2/2). 

Here LY is a normalisation constant, y := ( 2 m / f 1 ~ ) ” ~  and p is a real parameter to be 
varied. The results are given in the two figures below. Figure 1 shows the convergence 
rates of the Lanczos algorithm and the ( 2 x 2 )  algorithm in the case where p was 
arbitrarily chosen. The convergence rates of the two algorithms obviously differ by a 
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Figure 1. Convergence rate of the Lanczos algorithm (A) and the (2 x 2) algorithm (B) 
where in both cases p = 10. Units are chosen such that h 2 / 2 m  = 1. 
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Figure 2. Convergence rate of the modified (2 x 2) algorithm. 
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considerable amount. Figure 2 shows the improvement of the convergence rate of the 
(2 x 2) algorithm when it is modified in the aforementioned manner. Choosing the 
initial trial state for the Lanczos algorithm such that (T(P)IfiI T ( P ) )  is minimal, yields 
the same convergence rate within the numerical accuracy of the calculation. 

The modification of the (2 X 2) algorithm in the manner outlined above is of course 
by no means restricted to a single variational parameter. It works as well in the case 
where one considers a family of trial states where each member is specified by several 
parameters. However, the variational equations in each iteration step become more 
extensive, but can be solved by standard techniques. Scaling the coordinates of the 
constituent particles of a quantum mechanical system (Lowdin 1959) should provide a 
simple means of passing from a single trial state to a family of trial states. In particular, 
in the case where the potential energy is a homogeneous function of the coordinates, the 
variation of the total energy expectation value with respect to the scaling parameters 
can be considerably simplified (Lowdin 1959). 

We wish to thank the Computing Center of the University of Frankfurt for making their 
facilities available. 
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